Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
A key feature of federated learning (FL) is to preserve the data privacy of end users. However, there still exist potential privacy leakage in exchanging gradients under FL. As a result, recent research often explores the differential privacy (DP) approaches to add noises to the computing results to address privacy concerns with low overheads, which however degrade the model performance. In this paper, we strike the balance of data privacy and efficiency by utilizing the pervasive social connections between users. Specifically, we propose SCFL, a novel Social-aware Clustered Federated Learning scheme, where mutually trusted individuals can freely form a social cluster and aggregate their raw model updates (e.g., gradients) inside each cluster before uploading to the cloud for global aggregation. By mixing model updates in a social group, adversaries can only eavesdrop the social-layer combined results, but not the privacy of individuals. We unfold the design of SCFL in three steps. \emph{i) Stable social cluster formation. Considering users' heterogeneous training samples and data distributions, we formulate the optimal social cluster formation problem as a federation game and devise a fair revenue allocation mechanism to resist free-riders. ii) Differentiated trust-privacy mapping}. For the clusters with low mutual trust, we design a customizable privacy preservation mechanism to adaptively sanitize participants' model updates depending on social trust degrees. iii) Distributed convergence}. A distributed two-sided matching algorithm is devised to attain an optimized disjoint partition with Nash-stable convergence. Experiments on Facebook network and MNIST/CIFAR-10 datasets validate that our SCFL can effectively enhance learning utility, improve user payoff, and enforce customizable privacy protection.
translated by 谷歌翻译
Vision-Language Pre-Training (VLP) has shown promising capabilities to align image and text pairs, facilitating a broad variety of cross-modal learning tasks. However, we observe that VLP models often lack the visual grounding/localization capability which is critical for many downstream tasks such as visual reasoning. In this work, we propose a novel Position-guided Text Prompt (PTP) paradigm to enhance the visual grounding ability of cross-modal models trained with VLP. Specifically, in the VLP phase, PTP divides the image into $N\times N$ blocks, and identifies the objects in each block through the widely used object detector in VLP. It then reformulates the visual grounding task into a fill-in-the-blank problem given a PTP by encouraging the model to predict the objects in the given blocks or regress the blocks of a given object, e.g. filling `P" or ``O" in aPTP ``The block P has a O". This mechanism improves the visual grounding capability of VLP models and thus helps them better handle various downstream tasks. By introducing PTP into several state-of-the-art VLP frameworks, we observe consistently significant improvements across representative cross-modal learning model architectures and several benchmarks, e.g. zero-shot Flickr30K Retrieval (+4.8 in average recall@1) for ViLT \cite{vilt} baseline, and COCO Captioning (+5.3 in CIDEr) for SOTA BLIP \cite{blip} baseline. Moreover, PTP achieves comparable results with object-detector based methods, and much faster inference speed since PTP discards its object detector for inference while the later cannot. Our code and pre-trained weight will be released at \url{https://github.com/sail-sg/ptp}.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
In many real-world applications of reinforcement learning (RL), performing actions requires consuming certain types of resources that are non-replenishable in each episode. Typical applications include robotic control with limited energy and video games with consumable items. In tasks with non-replenishable resources, we observe that popular RL methods such as soft actor critic suffer from poor sample efficiency. The major reason is that, they tend to exhaust resources fast and thus the subsequent exploration is severely restricted due to the absence of resources. To address this challenge, we first formalize the aforementioned problem as a resource-restricted reinforcement learning, and then propose a novel resource-aware exploration bonus (RAEB) to make reasonable usage of resources. An appealing feature of RAEB is that, it can significantly reduce unnecessary resource-consuming trials while effectively encouraging the agent to explore unvisited states. Experiments demonstrate that the proposed RAEB significantly outperforms state-of-the-art exploration strategies in resource-restricted reinforcement learning environments, improving the sample efficiency by up to an order of magnitude.
translated by 谷歌翻译
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the data scarcity problem in NER by automatically generating training samples. Unfortunately, the distant supervision may induce noisy labels, thus undermining the robustness of the learned models and restricting the practical application. To relieve this problem, recent works adopt self-training teacher-student frameworks to gradually refine the training labels and improve the generalization ability of NER models. However, we argue that the performance of the current self-training frameworks for DS-NER is severely underestimated by their plain designs, including both inadequate student learning and coarse-grained teacher updating. Therefore, in this paper, we make the first attempt to alleviate these issues by proposing: (1) adaptive teacher learning comprised of joint training of two teacher-student networks and considering both consistent and inconsistent predictions between two teachers, thus promoting comprehensive student learning. (2) fine-grained student ensemble that updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise. To verify the effectiveness of our proposed method, we conduct experiments on four DS-NER datasets. The experimental results demonstrate that our method significantly surpasses previous SOTA methods.
translated by 谷歌翻译
Hyperbolic space is emerging as a promising learning space for representation learning, owning to its exponential growth volume. Compared with the flat Euclidean space, the curved hyperbolic space is far more ambient and embeddable, particularly for datasets with implicit tree-like architectures, such as hierarchies and power-law distributions. On the other hand, the structure of a real-world network is usually intricate, with some regions being tree-like, some being flat, and others being circular. Directly embedding heterogeneous structural networks into a homogeneous embedding space unavoidably brings inductive biases and distortions. Inspiringly, the discrete curvature can well describe the local structure of a node and its surroundings, which motivates us to investigate the information conveyed by the network topology explicitly in improving geometric learning. To this end, we explore the properties of the local discrete curvature of graph topology and the continuous global curvature of embedding space. Besides, a Hyperbolic Curvature-aware Graph Neural Network, HCGNN, is further proposed. In particular, HCGNN utilizes the discrete curvature to lead message passing of the surroundings and adaptively adjust the continuous curvature simultaneously. Extensive experiments on node classification and link prediction tasks show that the proposed method outperforms various competitive models by a large margin in both high and low hyperbolic graph data. Case studies further illustrate the efficacy of discrete curvature in finding local clusters and alleviating the distortion caused by hyperbolic geometry.
translated by 谷歌翻译
In recent years, the field of intelligent transportation systems (ITS) has achieved remarkable success, which is mainly due to the large amount of available annotation data. However, obtaining these annotated data has to afford expensive costs in reality. Therefore, a more realistic strategy is to leverage semi-supervised learning (SSL) with a small amount of labeled data and a large amount of unlabeled data. Typically, semantic consistency regularization and the two-stage learning methods of decoupling feature extraction and classification have been proven effective. Nevertheless, representation learning only limited to semantic consistency regularization may not guarantee the separation or discriminability of representations of samples with different semantics; due to the inherent limitations of the two-stage learning methods, the extracted features may not match the specific downstream tasks. In order to deal with the above drawbacks, this paper proposes an end-to-end deep semi-supervised learning double contrast of semantic and feature, which extracts effective tasks specific discriminative features by contrasting the semantics/features of positive and negative augmented samples pairs. Moreover, we leverage information theory to explain the rationality of double contrast of semantics and features and slack mutual information to contrastive loss in a simpler way. Finally, the effectiveness of our method is verified in benchmark datasets.
translated by 谷歌翻译
While large pre-trained models have transformed the field of natural language processing (NLP), the high training cost and low cross-lingual availability of such models prevent the new advances from being equally shared by users across all languages, especially the less spoken ones. To promote equal opportunities for all language speakers in NLP research and to reduce energy consumption for sustainability, this study proposes an effective and energy-efficient framework GreenPLM that uses bilingual lexicons to directly translate language models of one language into other languages at (almost) no additional cost. We validate this approach in 18 languages and show that this framework is comparable to, if not better than, other heuristics trained with high cost. In addition, when given a low computational cost (2.5\%), the framework outperforms the original monolingual language models in six out of seven tested languages. We release language models in 50 languages translated from English and the source code here.
translated by 谷歌翻译
Graph-structured data are widespread in real-world applications, such as social networks, recommender systems, knowledge graphs, chemical molecules etc. Despite the success of Euclidean space for graph-related learning tasks, its ability to model complex patterns is essentially constrained by its polynomially growing capacity. Recently, hyperbolic spaces have emerged as a promising alternative for processing graph data with tree-like structure or power-law distribution, owing to the exponential growth property. Different from Euclidean space, which expands polynomially, the hyperbolic space grows exponentially which makes it gains natural advantages in abstracting tree-like or scale-free graphs with hierarchical organizations. In this tutorial, we aim to give an introduction to this emerging field of graph representation learning with the express purpose of being accessible to all audiences. We first give a brief introduction to graph representation learning as well as some preliminary Riemannian and hyperbolic geometry. We then comprehensively revisit the hyperbolic embedding techniques, including hyperbolic shallow models and hyperbolic neural networks. In addition, we introduce the technical details of the current hyperbolic graph neural networks by unifying them into a general framework and summarizing the variants of each component. Moreover, we further introduce a series of related applications in a variety of fields. In the last part, we discuss several advanced topics about hyperbolic geometry for graph representation learning, which potentially serve as guidelines for further flourishing the non-Euclidean graph learning community.
translated by 谷歌翻译